4 resultados para Microcystis

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the Bangalore sewage is treated in three streams namely Bellandur (K&C Valley),Vrishabhavati and Hebbal-Nagavara stream systems. Among these it is estimated that out of a total of about 500MLD of partially treated sewage is let into the Bellandur tank. We estimate that a total of about 77t N non-industrial anthropogenic nitrogen efflux (mainly urine and excreta) in Bangalore city. This is distributed between that handled by the three sewage streams, soak-pits and land deposition. About 17-24.5t N enters the Bellandur tank daily. This has been happening over few decades and our observations suggest that this approximately 380ha tank is functioning as a C and N removal system with reasonable efficiency. The ammoniacal and nitrate nitrogen content of the water at the discharge points were estimated and found that over 80% of the nitrogen influx and over 75% of the C influx is removed by this tank system. We observed that there are three nitrogen sinks namely bacterial, micro-algal and macrophytes. The micro-algal fraction is dominated by Microcystis and Euglenophyceae members and they appear to constitute a significant fraction. Water hyacinth represents the single largest representative of the macrophytes. This tank has been functioning in this manner for over three decades. We attempt to study this phenomenon from a material balance approach and show that it is functioning with a reasonable degree of satisfaction as a natural wetland. As the population served and concomitant influx into this wetland increases, there is a potential for the system to be overloaded and to collapse. Therefore a better understanding of its function and the need for maintenance is discussed in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The restoration, conservation and management of water resources require a thorough understanding of what constitutes a healthy ecosystem. Monitoring and assessment provides the basic information on the condition of our waterbodies. The present work details the study carried out at two waterbodies, namely, the Chamarajasagar reservoir and the Madiwala Lake. The waterbodies were selected on the basis of their current use and locations. Chamarajasagar reservoir serves the purpose of supplying drinking water to Bangalore city and is located on the outskirts of the city surrounded by agricultural and forest land. On the other hand, Madiwala lake is situated in the heart of Bangalore city receiving an influx of pollutants from domestic and industrial sewage. Comparative assessment of the surface water quality of both were carried out by instituting the various physico–chemical and biological parameters. The physico-chemical analyses included temperature, transparency, pH, electrical conductivity, dissolved oxygen, alkalinity, total hardness, calcium hardness, magnesium hardness, nitrates, phosphates, sodium, potassium and COD measurements of the given waterbody. The analysis was done based on the standard methods prescribed (or recommended) by (APHA) and NEERI. The biological parameter included phytoplankton analysis. The detailed investigations of the parameters, which are well within the tolerance limits in Chamarajasagar reservoir, indicate that it is fairly unpolluted, except for the pH values, which indicate greater alkalinity. This may be attributed to the natural causes and the agricultural runoff from the catchment. On the contrary, the limnology of Madiwala lake is greatly influenced by the inflow of sewage that contributes significantly to the dissolved solids of the lake water, total hardness, alkalinity and a low DO level. Although, the two study areas differ in age, physiography, chemistry and type of inflows, they still maintain a phytoplankton distribution overwhelmingly dominated by Cyanophyceae members,specifically Microcystis aeruginosa. These blue green algae apparently enter the waterbodies from soil, which are known to harbour a rich diversity of blue green flora with several species common to limnoplankton, a feature reported to be unique to the south Indian lakes.Chamarajasagar water samples revealed five classes of phytoplankton, of which Cyanophyceae (92.15 percent) that dominated other algal forms comprised of one single species of Microcystis aeruginosa. The next major class of algae was Chlorophyceae (3.752 percent) followed by Dinophyceae (3.51 percent), Bacillariophyceae (0.47 percent) and a sparsely available and unidentified class (0.12 percent).Madiwala Lake phytoplankton, in addition to Cyanophyceae (26.20 percent), revealed a high density of Chlorophyceae members (73.44 percent) dominated by Scenedesmus sp.,Pediastrum sp., and Euglena sp.,which are considered to be indicators of organic pollution. The domestic and industrial sewage, which finds its way into the lake, is a factor causing organic pollution. As compared to the other classes, Euglenophyceae and Bacillariophyceae members were the lowest in number. Thus, the analysis of various parameters indicates that Chamarajasagar reservoir is relatively unpolluted except for the high percentage of Microcystis aeruginosa, and a slightly alkaline nature of water. Madiwala lake samples revealed eutrophication and high levels of pollution, which is clarified by the physico–chemical analysis, whose values are way above the tolerance limits. Also, the phytoplankton analysis in Madiwala lake reveals the dominance of Chlorophyceae members, which indicate organic pollution (sewage being the causative factor).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixty-four sequences containing lectin domains with homologs of known three-dimensional structure were identified through a search of mycobacterial genomes. They appear to belong to the -prism II, the C-type, the Microcystis virdis (MV), and the -trefoil lectin folds. The first three always occur in conjunction with the LysM, the PI-PLC, and the -grasp domains, respectively while mycobacterial -trefoil lectins are unaccompanied by any other domain. Thirty heparin binding hemagglutinins (HBHA), already annotated, have also been included in the study although they have no homologs of known three-dimensional structure. The biological role of HBHA has been well characterized. A comparison between the sequences of the lectin from pathogenic and nonpathogenic mycobacteria provides insights into the carbohydrate binding region of the molecule, but the structure of the molecule is yet to be determined. A reasonable picture of the structural features of other mycobacterial proteins containing one or the other of the four lectin domains can be gleaned through the examination of homologs proteins, although the structure of none of them is available. Their biological role is also yet to be elucidated. The work presented here is among the first steps towards exploring the almost unexplored area of the structural biology of mycobacterial lectins. Proteins 2013. (c) 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algae biofuel have emerged as viable renewable energy sources and are the potential alternatives to fossil-based fuels in recent times. Algae have the potential to generate significant quantities of commercially viable biofuel apart from treating wastewater. Three algal species, viz. Chlorococcum sp., Microcystis sp. and Phormidium sp. proliferating in wastewater ponds were isolated and cultured in the laboratory myxotrophically under similar wastewater conditions. Chlorococcum sp. attained a mean biomass productivity of 0.09 g. I(-1)d(-1) with the maximum `biomass density of 1.33 g I-1 and comparatively higher lipid content of 30.55% (w/w) on the ninth day of the culture experiment. Under similar conditions Microcystis sp. and Phormidium sp. attained mean biomass productivities of 0.058 and 0.063 g I-1 d(-1) with a total lipid content of 8.88% and 18.66% respectively. Biochemical composition (carbohydrates, proteins, lipids and phosphates) variations and lipid accumulation studies were performed by comparison of the ratios of carbohydrate to protein; lipid to protein (L/P) and lipid to phosphates using attenuated total reflectance-Fourier transform infrared spectroscopy which showed higher L/P ratio during the stationary phase of algal growth. Composition analysis of fatty acid methyl ester has been performed using gas chromatography and mass spectrometry. Chlorococcum sp. with higher productivity and faster growth rate has higher lipid content with about 67% of saturated fatty acid dominated by palmitate (36.3%) followed by an unsaturate as linoleate (14%) and has proved to be an economical and viable feedstock for biofuel production compared to the other wastewater-grown species.